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A classical gas with short-range interaction in the grand canonical ensemble is 
studied. If p(,8, z) denotes the thermodynamic pressure at inverse temperature ,8 
and activity z, then it follows from the Mayer expansion that p(,8, z) is infinitely 
differentiable provided /~ and ,sz are sufficiently small. Here it is shown that 
there exists ,80 > 0 such that p(,8, z) is infinitely differentiable if ,8 < ,80 and z > O. 
One can interpret this result as saying that (/~o) i is an upper bound on the 
critical temperature for the system. 
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1. I N T R O D U C T I O N  

We are interested in the thermodynamic behavior of a classical system of 
particles in three dimensions which interact under a short-range potential. 
We shall be concerned with the problem of showing that there is a tem- 
perature To such that if T >  To then there is no phase transition. We shall 
interpret this in the following restricted way: Let p = p(/?, z) be the thermo- 
dynamic pressure as a function of the inverse temperature /3> 0 and the 
activity z > 0. Our problem is to show that there is a /~o > 0 such that 
p(/~, z) is infinitely differentiable if/~ </~o and z > 0. 

Let us suppose the interaction potential for our system is v(x, y)= 
q~(x-y) ,  where ~ satisfies the short-range condition 

Icb(x)i<~c/Ixl 3+~, Ixi>~Ro>O, ~ > 0  (1.1) 

and the stability bound 

r -NB, B>~O (1.2) 
l <~i<j<~N 
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The grand partition function in a cube A at inverse temperature /~ and 
activity z is 

Z6(~,z,A)= N.v Nexp -[3 ~ v(xi, xj) dXl...dXN (1.3) 
N=0 l <~i<j<~N 

and the corresponding pressure PA(~, Z) is defined by 

[IpA(~, Z)= (Vol A) -2 log ZG(/~, z, A) (1.4) 

It is well known (m that if q5 satisfies the conditions (1.1) and (1.2), then 
the thermodynamic pressure p(/~, z) defined by 

p(/?, z) = lim PA(~, Z) (1.5) 
A~oo 

exists and that p(/~, z) is a continuous function satisfying certain convexity 
conditions corresponding to thermodynamic stability. 

Our goal here is to understand some differentiability properties of 
p(/~, z). As a first step in this direction, we consider the standard Mayer 
expansion for p(/~, z), (1) 

~p(fl, z)= ~ an(~)z n (1.6) 
n = l  

where a l ( /?)= 1 and 

[an(fl)[~[fll[~l[1] n lnn-Zen~B/n!, n>~2 (1.7) 

where [1~t[1 is the L ~ norm of 4. It is clear from (1.7) that if 

[Z[" [[~][1 e B B + z <  1 (1.8) 

then the series (1.6) converges and is indeed analytic in z. In fact, one can 
easily further show that if ~ and z satisfy (1.8), then p(~, z) is infinitely 
differentiable in/? and z. 

The problem with the condition (1.8) is that no matter how small 
/3 > 0 is, there is always a z > 0 which violates the inequality. In order to 
make further progress, we need to specialize to a particular potential ~(x)  
given by 

1 Ix-yl 1)-2 v(x, y )=qS(x -y )=~e  = ( - A +  (x, y) (1.9) 

where A denotes the three-dimensional Laplace operator. It will be impor- 
tant for us in the following to use the fact that q~ is the inverse of a local 
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operator. We make a final simplification in our problem by introducing 
charges into the system. Thus, we assume that the particle at xi ~ R 3 has 
charge e~ = +_ 1 with equal probability 1/2. The grand partition function of 
the charged system is 

zc, G(#, z, A)= 
N = 0  N 

e x p l - P  ~ eiejv(xi, xj)]dxl'"dXN 
l<~i<j<~N 

(1.1o) 

where the integration dxi denotes now integration over xi~A and 
summation over e i =  _+1 with probability 1/2. The pressure PC, A(p,Z) 
corresponding to (1.10) is 

PPc, A(P, Z) = (Vo1 A) -1 log Zc, G(P, z, A) (1.11) 

and the thermodynamic pressure Pc(P, z) for the charged system is again 

Pc(P, z) = lim PC, A(P, Z) (1.12) 

We then have the following result. 

T h e o r e m  1.1. There is a f l o > 0  such that pc(fl, z) is infinitely 
differentiable for all (fi, z) such that 0 < fi < flo, z > 0. 

A result of a similar nature has been proven for a lattice Coulomb gas 
by Fr6hlich and Spencer (8) with techniques different from those used here. 

For  the potential ~ given by (1.9), [l~lll = 1, B = 1/167r. Hence, if we 
put 

= z exp(fl/167r) (1.13) 

then from (1.8) we see that Pc(fl, z) is infinitely differentiable if 

]fis < e  -1 (1.14) 

Now let us suppose z > 0  and define a correlation length l c = ( p ~ )  1/4 
Hence the condition (1.14) is lc > e 1/4. We shall prove the following. 

T h e o r e m  1.2. Suppose lc ~<2. Then there is an e > 0  such that 
Pc(P, z) is infinitely differentiable provided Plc< e. 

It is easy to derive Theorem 1.1 from Theorem 1.2 and (1.14). From 
(1.14) it is sufficient to prove the theorem when l c ~< 2. In that case we have 
2~> 1/16p, and Theorem 1.2 tells us that Pc(P, z) is infinitely differentiable 
if pIc <e. This latter condition is the same a s  z > p 3 / e 4 .  Hence, Pc(P, z) is 
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infinitely differentiable in (fl, z) for all z > 0 provided /~3/e4 < 1/16/~. We can 
therefore take fl0 = e/2 in Theorem 1.1. 

The condition/~lc small of Theorem 1.2 says that in a perfect gas with 
activity ~ there are many particles in a cube with side of length lc. In fact, 
the expectation of the number of particles inside such a cube is ~l~ = 1/~lc. 
Thus, we expect that, for our charged system, the charge on a cube with 
side of length Ic is approximately Gaussian with mean zero provided fllc is 
small. By integrating these Gaussian variables out of the system, we obtain 
a partition function which has a convergent Mayer series and it is this 
which yields Theorem 1.2. The scheme does not work for the repulsive 
system with potential (1.9). Although the number of particles in a cube 
with side of length l C is still approximately Gaussian, the mean becomes 
large as fllc becomes small. This problem Seems to be related to the multi- 
scale problems studied by Gaw~dzski and Kupiainen. ~9) 

It is easy to obtain from the present techniques a result similar to 
Theorem 1.1 for the differentiability of Pc as a function of fi and density p, 

p= zlt O~zc (1.15) 

The reason is that when z satisfies (1.14), the Mayer expansion (1.6) holds, 
while in the regime of Theorem 1.2 the expansion (2.8), (3.21) holds. In 
particular there are constants cl, c2 > 0 such that 

c 1 <~OP~c2, z > 0  (1.16) 
0z 

It follows then that Eq. (1.15) can be inverted to obtain z as a function of 
fl and p. One should perhaps note here that our expansions do not yield 
Pc(fi, z) as an analytic function of z when z is large. 

To implement the present scheme, we shall adapt the method 
developed by Brydges and Federbush (2) to prove Debye screening in classi- 
cal Coulomb systems. This method has been developed in great generality 
in refs. 2, 7, 10, and 12. Here we shall only be concerned with the basic 
technique in its simplest form. We do some estimates rather differently than 
in ref. 2, using a lemma of Federbush (6) which has been used in problems 
concerned with the stability of matter. (4 6) The remainder of this paper 
shall be devoted to the proof of Theorem 1.2. 

2. F I E L D - T H E O R E T I C  F O R M U L A T I O N  

Here we follow the ideas of ref. 2, and write the partition function 
(1.10) in the sine-Gordon representation. Let A D be the Laplace operator 
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with Dirichlet boundary conditions imposed on 0A. Then the potential 
(1.9) with Dirichlet boundary conditions imposed is VD(X, y), where 

vD(x, y )= ( - ~  + 1) -2 (x, y) (2.1) 

For x ~ A let us define z(x) by 

z(x)= z exp {~ [v(x, x ) -  vD(x, x) ]} (2.2) 

and the Dirichlet partition function Zc,~,o by 

Zc, a,D(B, z, A)=  N.T Nexp --B ~ eieSvD(x i, xj) 
N=O l<~i<j~N 

X Z ( X l ) - ' -  Z(XN) dxl . . ,  dXN (2.3) 

The corresponding pressure is PC, D,A, where 

BPc, D,A( 3, z) = (Vol A) -1 log ZC, G,D( B, Z, A) (2.4) 

Then one can easily prove the following using the techniques in ref. 11. 

k e m m a  2.1. Let Pc(B, z) be defined by (1.12). Then 

Pc(B, z )=  lim PC, D,A(B, z) (2.5) 
A ~ o o  

The advantage of the partition function (2.3) over (1.10) is that it has 
a simpler representation in the sine-Gordon field theory. We have 

where the expectation E is over fields ~b(x) on A with covariance vo(x, y). 
If we put 

then we have the relation 

BPc, D.A(B, z) = 2 + BP A(B, z) (2.8) 

We shall develop a perturbation series expansion for PA(B, z) similar to 
ref. 1 by expanding the expression (2.7) with respect to the covariance 
corresponding to the differential operator ~D, where 

~D = (--AD + i )2+ 1/l 4 (2.9) 
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which is obtained from the sine-Gordon representation (2.7) by making the 
approximation 

2[cos flvz(~(x)- 1] - - (2f i)  ~b(x)2/2 (2.10) 

To implement this, we cover R 3 with a lattice of cubes Q with side of 
length Lie, where 0 < L < 1, and L shall be chosen appropriately small later 
to make the perturbation series converge. We shall assume that the large 
cube A is always a union of the small cubes Q. Next let h(x) be functions 
on R 3, constant on cubes Q, such that h(x)= 0 if x r A and fll/2h(x)/2~ is 
integer valued. We define a function G(~b) of the field ~b by the equation 

exp { f A s ~l/20(x)-- l ] dx } 

Let g be a linear mapping on the functions h given by 

g(h) = i~ P~D'h (2.12) 

For two functions h and h' we define an inner product F(h, h') by the 
identity 

2F(h,h ' )=(g(h) , ( -Ao+l)2g(h ' ) )+~(g(h)-h,g(h ' ) -h  ') (2.13) 

where ( , ) denotes the L 2 inner product on A. If we put F(h)= F(h, h), 
then, on making the translation ~b = ~ + g(h), we see that 

f lPA(~ ,  z )  -.-= (Vol A) 1 log ~c(~D) 

xlog(? 
where x(.~D) is given by 

\ 
exp[ - F ( h ) ]  Eeo{exp[G(tp + g(h))] }) 

(2.14) 

X(P~o)=det I+ (--AD + I) -2 (2.15) 

and E~o denotes expectation of fields ~9(x) on A with covariance ~F, 1. 
Writing CD(x, y) as the kernel of the operator ~Z, 1, we have the following 
inequality. 
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I.emma 2.1. Suppose lc ~< 2. Then there are universal constants A, 
2 > 0 such that 

ICD(X, Y)I ~ Alc exp( --Ix -- yl/2l,.) 
IVxCD(x, Y)I ~ A exp( - I x - -  yl/Rlc) 

IVx VyCD(x, y)l ~< Als -~ exp( - I x -  yl/2lc.) 
(2.16) 

ProoL We consider the operator ~2 o n  R 3 given by ~ = ( - A  + 1)2 + 
1/I 4. Then we evidently have the identity 1( ,)1] 

= ~  ~ - - A + I + ~  (2.17) 

We write 

i Q 1 "~ 1/2 
1 + ~ =  1 + ~ )  e ,~ (2.18) 

where 0 < 0 <  ~/2, tan 0 = 1/12c . Then the kernel of ~ 1 is given by the 
formula 

l~ { exp[_ ( l  +i!)l/4e_;O/2 lx_ yll 
~-  ~(x, y)= 87zi Ix-  y] 

- exp [ - ( l + i~ ) l/4 e;~ - yl ] } 

- lc exp - 1+77 cos I x - y l  4re Ix-  yl lc) 

[( 0 ] 
xsin l+TXlo ) s l n ~ [ x - y [  (2.19) 

Using the fact that lc ~< 2, 0 < 0/2 < z/4, it is easy to see that 

171/4 
[i~ l(x, y)[ ~ < - -  lc exp( - I x  - yl/x/-2 lc) 

4To w/2 

The inequality (2.16) follows easily from (2.20), since one can construct 
Co(x, y) by the method of images from t3-1(x, y). 
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3. THE CLUSTER EXPANSION 

Our goal here is to develop a cluster expansion for the partition func- 
tion given in (2.14). First, for a lattice cube Q c A let GQ(~b) be defined by 

exp[GQ(~b)]=exp{fQ2[COsfll/2fb(x)-l]dx} 

x , oo exp 2l c _ (~(x)---~/ dx (3.1) 

If X c  A is a union of lattice cubes Q, we define Gx(e)) by 

ax(~b)= 2 aQ(~b) (3.2) 
Q = x  

and it is evident that G(~b) defined by (2.11) is identical to GA(~b). 
Let h(x) be a discrete-valued functi'on occurring in the definition of the 

pressure (2.14), and suppose S(h) is the discontinuity set for h. Thus, 
S(h)cA and S(h) consists of a set of faces of lattice cubes Q. Suppose 
J ; 'c  A is a connected set consisting of a union of cubes Q. We denote by 
hx any function o n  R 3 constant on cubes Q with ~l/2hx/2rc integer valued 
such that S(hx)cInt[Xu R3\A], hx(x)= 0 if x eR 3 is large, and every 
cube Q c X has nonempty intersection with S(hx). It is easy to see then 
that every h function has a unique decomposition 

h= ~ hx, (3.3) 
i - - 1  

where the connected sets J'e, 1 ~< i ~< n, are all disjoint and contained in A. 
Suppose J( is a subset of A which is a union of lattice cubes Q. For  

i = 1, 2 .... we shall define the activity Ki(X ) of/-particle clusters on II. First 
we take the case i =  1. When X =  Q we define KI(Q) by 

KI(Q) = E~v{exp[GQ(O)] - 1 } (3.4) 

If X is disconnected, we put KI(X)= 0 and if X r  Q is connected, ~ve define 
KI(X) by 

K~(X)=~exp[-F(hx)] EaD{exp[Gx( ~, + g(hx))]} (3.5) 
hx 

For i = 2, we put K2(Q) = 0. Letting [X[ be the number of lattice cubes 
contained in the set X, we define K2(X) for ]XF/>2 as a sum 

K~(X) = y~ K~(Y, Z) (3.6) 
Y ~ Z = X  
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The sum is taken over disjoint sets Y, Z whose union is J( and which 
themselves are unions of lattice cubes. The quantity /(2( Y, Z)  is defined 
differently according to the type of sets Y, Z. Let us suppose that both Y 
and Z are lattice cubes. Then K2(Y, Z) is defined by interpolating the 
covariance CD(X, y). For 0 ~< s ~< 1 let ~D,~ be the operator with covariance 

CD, s(X, y ) =  {s+ (1 -s)[ )~y(x))~v(y)+Zz(X)Zz(Y)]  } CD( x, Y) (3.7) 

Then we have 

K2( Y, Z)  = dsEeo., Jz CD(X, y) dx dy exp[Gx(qJ)] 

(3.8) 

Next suppose Z is a lattice cube but Y is connected and I YI > 1. If there 
exists a function hy we need to interpolate g(hy) as well as the covariance. 
For 0 ~< s ~< 1, let g,(x) be defined by 

gs(x) = g(hy)(x), x e Y 

=sg(h~)(x), x r  Y (3.9) 

Then K2( Y, Z)  in this case is given by 

1 

K2(Y, Z ) = I _  ds ~ e x p [ - F ( h y ) ]  Ee~.s 
~0 hy 

• Y C~(x, y) aV,(x~ 6q,(y~) 

+fzg(hr ) (x )6@(x)dx]exp[Gx(O+gs)]  } (3.10) 

If both Y and Z are connected with [ Y[ > 1 and [Z[ > 1, and there exist an 
h r and hz, then we also need to interpolate F(hr + hz). For 0 ~ s ~< 1, let 
F, be defined by 

F, = F(h r) + F(hz) + 2sF(h y, hz) (3.11 ) 

We interpolate g(h~, +hz)  as follows: 

gs(X) = sg(h y + hz)(X ) + (1 - s) g(h y)(x), 

= sg(h r + hz)(X ) + (1 - s) g(hz)(X), 

=sg(h, ,+hz)(x) ,  x C Y u Z  

x ~ Y  

x e Z  (3.12) 
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Then K2(Y, Z) is given by the formula 

1 

K2(Y,Z)=;o ds ~ exp(-Fs)E~o,, 
hy, hz  

6 
+ fyg(hz)(X) 6 ~ )  dX + fz 

x exp[Gx(~ + gs)]} (3.13) 

6 
Co(x, y )  - -  - -  d x  @ 

c~O(x) 60(y) 

g(hy)(x)6@(x) dxj 

For all other subdivisions Y and Z of X not included in the above three 
categories we put K2(Y, Z)=0. 

The n-particle activity on X, K,(X), is defined for n t> 2 in a similar 
way to the n = 2  case. First K~(X)=0 if IX] <n.  For ]XI >>.n, K,(X) is 
given as a sum, 

K~(X) = ~ K~(X~, X2,..., X,) (3.14) 
UT=~ x~=x 

The sum in (3.14) is over disjoint sets Xi, 1 ~< i<<.n, whose union is X and 
which themselves are unions of lattice cubes. In addition, the sum is taken 
over distinct sets {X1, X2 ..... Xn} so that permutations of the Xi are not 
counted in (3.14). To define Kn(XI,..., Xn), we fix a tree graph T on the 
integers 1, 2,..., n. Let s be a parameter which varies in the set F ,  = 
[0, 1 ]n-1 and J be a partition of the integers 1, 2 ..... n. For a given s, inter- 
polation is constructed with parameters 2r, s(s)/> 0, where 

;~T,j(s)  = 1 (3 .15 )  
J 

The interpolated covariance Co, s(x, y) is given by 

Co, s(x, y) = CD(x, y) ~ 2T, j(s) ~ Zs(X) )&(y) (3.16) 
J S ~ J  

where l:s denotes the characteristic function of the set 0 i~s  Xi. The inter- 
polated function F, denoted Fs, is given by 

J i 

The interpolated g, denoted gs, is defined by 

g,(x)=~ 2r, j(s)g( ~ hxi)(x), xeX k (3.18) 
J i ~ S ( J , k )  
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where S(J, k) denotes the set in J which includes the integer k. There is 
then a probability measure d#r  on Fn such that 

Kn(X1 ..... X n ) = ~  ft ,  d # r ( s ) ~  exp( -F~)  
hx i 

(i,j) e T 

f x f x  j ~ + ~ CD(X, y) 60(x~) 60(Y~) 

• expEGx(~ + g~)]] 
J 

dx + jx ~ 

dx~ 

g(hx)(x)~-~(x)dX } 
(3.19) 

For the sum in (3.19) over hxi we include hx, - 0 when Xi is a lattice cube. 
The formula (3.19) clearly generalizes the previous formulas (3.8), (3.10), 
and (3.13) for the case n = 2. 

The total activity of a set X is given by K(X), where 

K(X)= ~ Kn(X) (3.20) 
n = l  

The pressure PA in (2.14) is then given by the formula 

.flPA(fl, Z) = (Vol A) -1 log K(~D) 

+ ( V o l A )  1 l o g [ l +  ~ K(YI). . .K(Ym) 1 
m = l  

(3.21) 

where the summation is over disjoint subsets Yi of A, 1 ~i~<m, which 
are unions of lattice cubes. In addition, the sum is over distinct sets 
{ YI ..... Ym}" Formula (3.21) is derived in detail in Sections 2.(~2.6 of ref. 3. 
Equation (3.21) gives us our cluster expansion. The partition function on 
the right in (3.21) is a hard-core-gas partition function on sets Yi and can 
be expanded as in ref. 1. The perturbation series converges if, for a lattice 
cube Q, 

IK(Y)I ~e -cN (3.22) 
Q~Y 

I Y I = N  

for sufficiently large constant c > 0. 
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4. EST IMATION OF ONE-PARTICLE ACTIVITIES 

Here we estimate the one-particle activities K~(X) for various sets X. 
First we need to discuss the properties of a certain function of a real 
variable r,(A) which depends on a small parameter r/> 0. We define r,(A) 
to be 

,.cos,,. ,_)l e,E_ _ r.(A) = exp \ r/2 = (4.1) 

Evidently r,(A) is periodic with period 2~z/~/, and 

r,(0) = 1 + O exp (4.2) 

Furthermore, it is easy to see that r,(A) is bounded below for all A, 

r~(A)~> 1 + O  exp (4.3) 

On the other hand, r~(A) can become arbitrarily large for sufficiently small 
77 and in fact 

r,(~/~l) = O {exp [ ( g 2  __ 4)/2r/2] } (4.4) 

We have from ref. 2 the following lemma, which estimates the derivatives 
of r~(A) 

k o m m a  4.1. There is a number 7, 0 < 7 < 1, and positive constants 
cl, c2, c3 which are universal such that 

/ N 

~-ff~ ) r,(A) <~ c1(c2~1/3) u exp[c2ulog(N + 1)] 

x exp[(TA2/2)], N~>0 (4.5) 

We use the functions r,(A) to estimate KI(Q) in the following. 

L o m m a  4.2. There is a constant C such that if L =  (r 1/1~ and 
/~lc < 1, then IK~(Q)I < C(~Ic) m~ for any lattice cube Q. 

Proof. For a function O(x) on A, let PO be the projection of ~ onto 
functions constant on lattice cubes. Thus, 

POCx)=CVolQ) -~ fQ O(y) dy, x s Q  (4.6) 



Upper Bound on Critical Temperature 277 

We write then 

exp[GQ(0)]  = r~(A) exp[RQ(0)]  (4.7) 

= (fllc)l/2/L 3/2, A = L 3 / 2 p O ( N ) / I ~ / 2  , x ~  Q (4.8) 

From (3.1) and (4.1) we then have the formula 

exp[RQ(O)]=exp {f--~ fO [O(x)-- PO(x)] 2 dx 

-}- fQ Z[-COS fll/2O(X)-- COS fll/2pO(x) ] dx} 

1 [0(x  ) _ P 0 ( x ) ]  z =exp  ~ 4 f e  

( ;;f/ x 1 - 2 u cos {fll/2pO(x) 

+ uvfll/2[ O(x ) - P0(x ) ]  } du dv) dx} (4.9) 

From (4.9) one easily sees that 

l ~exp[Re(O)]<~exp{~ f ~ [O(x)-PO(x)]2 dx} (4.10) 

Next we write 

exp[Go(0) ]  = II(0)  + 12(0) q-/3(@) (4.11) 

where 
II(0)  = [r .(A) - r . (0)]  exp[Ro(0)  ] 

I2(0) = [ r . ( 0 ) -  1] exp[RQ(0)]  (4.12) 

I3(0) = exp[RQ(0)]  

Let 7~Q be the characteristic function for A and put N=(2/l 4) 
(I-P) Ze(I-P). Then from (4.10) we have the inequality 

1 .G< E ~ [ I 3 ( 0 ) ]  -..< E~[exP(�89 ( 0, N 0 } ) ]  (4.[3) 

The expectation on the right in (4.13) is a Gaussian integral and can be 
evaluated explicitly. If we let M =  t2D 1, then 

Eav[exP(�89 (0 ,  N O ) ) ]  =det(I-M1/2NM 1/2) 1/2 (4.14) 
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Now we have 

(0,  e o ~ }  > (0,  (-A~)2 0} > (0,-A~0}2/II0II  2 (4.15) 
and 

(0,  --ADO) >~  (0,  N0} (4.16) 

It follows then, since �89 N0}/> [101[2//4, that 

(0,  !~D0} >I- �89 (~, N0} (4.17) 

Hence, if L < n/2, then ~v >~ 8N, whence one has the inequality 

M 1/2NM 1/2 <~ I/8 (4.18) 

From (4.18) it follows then that 

O<<.logdet(I-M1/2NMI/2)-I/2<~4TrMI/2NM1/2 (4.19) 

and one easily sees that 

Tr M 1/2NM 1/2 ~ ~ Tr M 1/2ZQ M 1/2 

2;~ 
= 7~ Co(x, x) dx <<. 2AL 3 (4.20) 

lc 

by Lemma 2.1. We conclude then that 

1 <~ Eeo[I3(O) ] <~ exp(~AL 3) (4.21) 

From (4.2) and (4.21) we have that 

--7~2 (~AL 3) (4.22) [EeD[12(O)]l <. O (exp----~-5--)exp 

We use Lemma 4.1 to estimate 11(0). Thus, 

111(0)1 ~< O/1/3 ]AI exp(vA2/2 +1 i (O, NO}) 

Ct?] 1/3 exp(7'A2/2 + �89 (0,  NO )) (4.23) 

for any 7 '>7 provided C' is chosen appropriately depending on 7 ' -7 .  
Since ~ < 1, we can take 7' < 1. If we let W be the operator 

W= ~ PZQP + N (4.24) 
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then it is clear from (4.8) and (4.15) that 

l/t(O)l ~< C'rl 1/3 exp( l (O,  WO)) (4.25) 

Arguing as before, we have that 

M 1/2 WM 1/2 <~ ~,i (4.26) 

assuming L < 7c/2 and y' >~ 1/8. Then 

1 
0 ~< log d e t ( I -  M1/2WM1/2)  -1/2 ~ 2(1 -- 7') Tr M I / 2 W M  1/2 (4.27) 

and since W<<. (2/14)Zo we have, as in (4.20), 

Tr M1/zWM 1/2 <~ 2AL 3 (4.28) 

We conclude then that 

Eefl-IIl(~)l ] ~ Cttl 1/3 e x p  - -  
AL 3 

(4.29) 
1 - 7 '  

The result follows now from (4.21), (4.22), and (4.29). | 

We turn next to extimating the one-particle activities KI(X ) for 
connected sets X which have a function hx associated with them. To do 
this, we use a lemma of Federbush (6) which has been useful in problems 
related to the stability of matter. (4 6) 

L e m m a  4.3. Let H D be the operator HD =( - -AD + 1)2+ V with 
potential V(x) >>. 0, Ve L ~, and suppose V(x) is constant on some open set 
U c R  3. Let gi(x), i =  1, 2, ..., m, be functions in the domain of (--AD) 2 
which have support contained in U and such that the supports of the Zg are 
all disjoint, l<~i~rn. Then for any function h e L ~ ( A )  there is the 
inequality 

(h, V H D t ( - A  D + 1) 2 HDIVh)  

>>- ~ {Vh, --AD)~,)2/(Zi, H~Z~) (4.30) 
i = 1  

Proof. Let ~b i = HD •i, 1 ~ i ~ m. Since Z~ is in the domain of ( - A  D) 2 
then ~bi E L2(A). Since the supports of the z i d o  not intersect, it follows that 
the ~bs form an orthogonal set, 1 ~ i ~ m. Hence we have the inequality 

822/'58/1-2-19 
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<h, VHDI(--AD + l)2 HD1Wh> 

>~ < h, VH DI(-- A D)2 H D1Vh > = lt -- A DH D1Vhll 2 

i = 1  

= ~ <Vh, HD'(--AD)fb~}2/<(~, ~b~} (4.31) 
i = l  

The result now follows by observing that since V is constant on U, we have 

H D~(--AD)~ = H DI(--AD) HDZ~ 

=H~gIHo(--AD)7.~=--ADz~ | (4.32) 

Now for the functions h constant on lattice cubes such that h(x)= 0 
for x r A which were defined in Section 2, let ha denote the value of h(x) for 
x in the cube Q~. Then we define 6(h) by 

(~(h)= ~ (h a -h~,)  2 (4.33) 

where the sum on e, e' is over nearest neighbor cubes Q~, Q~,. 

I . e mm a  4.4. Let h be a discrete-valued function of Section 2 and 
U c A  a set such that every lattice cube Q which intersects Z(h)  is 
contained in U. Let HD be an operator as in Lemma 4.3 with potential 
V(x) satisfying 0~< V(x)<~ 1/l~, V(x) constant on U, V(x)= Vo, and 
suppose L < 1. Then there is a universal constant C such that 

<h, VH~9'(-A D +1)2HD'Vh>>~CV~(Llc)76(h) (4.34) 

Proof. We use the inequality (4.30) and choose the functions ;~i 
appropriately to get the right-hand side of (4.34). Suppose nearest neighbor 
cubes Q~ and Q~, abut on a face which does not lie on ~A. Then we choose 
;~i to be a C ~ function supported in Q~ w Q~,. Since 

f -AD•idx =O (4.35) 

it is clear we can choose ~i such that 

I < h, -- A Dxi>I >~ Cl(Llc) Ih~ - ha, J (4.36) 

<Z~, H~ZI> ~< C2(LI~) -s (4.37) 

where C~ and Cz are universal constants. 
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If Q~ and Q~, abut on a face which does lie in 0A with Q~ contained 
in A, then we choose )~ to be supported in Q~. Let x 1, x 2 be Cartesian 
coordinates in the face and x 3 be the coordinate at right angles with x3> 0 
lying in Q~. We then put 

)~i(x) = X(x 1, x 2) ~(x 3 ) sin(x3/Ll~) (4.38) 

where )~(x t, x 2) is a C a function with compact support in the face on 0A, 
~(x 3) is a C a function such that ~(x3)=0 if x3>LlS2, and ~(x 3) = 1 if 
x3<LlS4. On choosing the functions Z and ~ appropriately in (4.38) 
we get inequalities (4.36) and (4.37) when h has a discontinuity in 8A. 
Summing over all possible Z~ then yields the inequality (4.34). | 

Let h and U be as in Lemma4.4 and L =  (/~lc) 1/1~ L o m m a  4.5. 
Then for filc< 1 there is the inequality 

exp[ - F(h)] E ~ { e x p [ G v ( 0  + g(h))] } 

~< Cl exp[c2 I U[ - c3(fllc) 3/lO 6(f11/2h)] (4.39) 

for universal constants Cl, c2, c3. 

ProoL From Lemma 4.1 and (4.10) we have the inequality 

exp[Gu(~, + g(h))] = exp[G,:(0 + g(h)-  h)] 

<~clexp[�89 W(O+g(h) -h) )  ] (4.40) 

where W is the operator 

W= ~ Pzv-P + N (4.41) 
1 c 

Zu is the characteristic function of the set U, and N is the operator N =  
(2/l 4) (I - P) )~ v ( I - P). If we make the reverse transformation ~b = 0 + g( h ), 
then it is clear that the left-hand side of (4.39) is bounded by 

{ E '  1 ]} 
Cl K (~)  1E exp - ~ ( O - h , O - h ) + ~ ( O - h , W ( O - h ) )  

{E 1 
~<Cl~C(~D) I E  exp - ~ ( O - h ,  V(O-h))  

1 h ) ) ] }  (4.42) + ~  (~b-h,  N(~b - 
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where V is the potential 

V(x) = ~ [1 - 7zu(x)] 

We make the change of variable O=O+gv(h) in 
given by 

gv(h) =HD1Vh 

with V the potential (4.43). If we define Fv(h) by 

2rv(h)= (gv(h), (--AD + 1) 2 gv(h) ) 

+ (gv(h)-h,  V[gv(h)-h])  
and IC(HD) by 

(4.43) 

(4.42), where gv(h) is 

(4.44) 

(4.45) 

;r V(-A D + 1) 2] 1/2 (4.46) 

then the right-hand side of (4.42) is given by 

cl;C(HD) ;c(~D) 1 e x p [ - F v ( h ) ]  

xEHD{exp[�89 } (4.47) 

where EHD denotes expectation with respect to the Gaussian field with 
covariance H D 1. 

First we bound the expectation EH~ by 

EH.{exP[�89 ( 0  + gv(h) - h, N(O + gv(h) - h))] } 

<~exp[(gv(h), Ngv(h))]. Ez~[exp((  0, N O ) ) ]  (4.48) 

Arguing as in Lemma 4.2, it is easy to see that if L < u/2, then 

EHo[exp((0 ,  N 0 ) ) ]  ~< exp(A~L31UI) (4.49) 

where I UI is the number of lattice cubes contained in U, and A~ is a 
constant depending only on 7 < 1. It follows also in a similar fashion that 
if L < u/2, then 

�89 (gv(h), Ngv(h) > >~0 (4.50) 

To estimate ~C(HD)~c(s 1, we observe that 

K(HD) K(s163 ) 1/2 (4.51) 
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Now we may argue as in Lemma 4.2 to obtain the bound 

~c(Ho) ~c(~o) -1 ~<exp 2(-l----y)[U[ (4.52) 

We conclude then from (4.48)-(4.52) that the right-hand side of (4.42) is 
bounded by 

cl exp[ - �89 exp(c2 lg[)  (4.53) 

for constants cl and c2. 
Finally, we apply Lemma 4.4 to obtain the inequality 

1 1 (1 ~7)  2 
5Sv(h)>5 c 7c (L/c) 7 6(h) 

1 
= ~  C(1 - - 7 )  2 (file) 3/1o cS(flU2h) (4.54) 

This last inequality taken together with (4.53) completes the proof. | 

L e m m a  4.6. Let N be an integer, N~>2, and L=(fllc) ~/1~ Then 
there exist constants C > 0, ~ > 0 such that if file < 3, then 

Proof. 

IKI(X)[ <--. exp[ -CN(f l lc )  -3/1~ (4.55) 
Q e X  

IZl = N  

From (3.5) and Lemma 4.5 we have the inequality 

IKI(X)] ~< cl exp(c2 [X]) ~ exp[-c3(fllc) 3/lo 6(fll/2hx)] 
hx 

(4.56) 

It is easy to see that for fll C small there is a constant c4 > 0 such that 

2 exp[--c3(fl lc)-3/1~ ~(flZ/2hx)] ~ e x p [ - c 4  IXI (file) 3/10] (4.57) 
hx 

The result follows now from the well-known fact that the number of 
connected sets X with IXl--N containing a given cube Q is bounded 
by 80 N. | 

5. E S T I M A T I O N  OF TWO-PARTICLE  ACTIVITIES 

We turn next to estimating two-particle activities K2(X) for different 
sets X. From here on we shall always take L =  (file) 1/1~ First we consider 
the case When IxI = 2. 
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L e m m a  5.1. There is a constant C such that if file < 1, then for any 
lattice cubes Q, Q' 

IK2(Q, Q')I ~< CL3(~lc) 1/5 e x p [ - d ( Q ,  Q')/2lc] (5.1) 

Proof. Now K2(Q, Q') is given by (3.8). We use the formulas (4.7) 
and (4.9) to obtain the identity 

fQf(y) 6 d Y exp[Ge(0 ) ]  

d 
= ~ exp [Go( 0 + t f ) ]  ] t = o 

~L 3/2 (L3/2PO~ 
= exp[RQ(~)]  [. l~/2 (Pf) r' 

1 ( ,  
+~ Jo [ O ( x ) -  PO(x)][f(x)- Pf(x)] 

x 1 - 2 u cos{fll/2PO(x ) + uvfll/z[O(x ) -  PO(x)] } du dv dx 

~ _ s  1 1 

x sin{~/2PO(x ) + uv~/2[O(x ) - P 0 ( x ) ]  } du dv dx} 

= exp [ R o ( 0 ) l  {I~(0) + /2 (0 )  + I3(0) } (5.2) 

From Lemma 4.1 we have 

IIl(0)l ~< c~L3/2~ ~/3 sup Ff(y)/l~/2l exp(TA2/2) (5.3) 
ycQ 

where c 1 is a constant and q and A are given by (4.8). On using the 
Schwarz inequality, it follows that 

,i2(~t)[ 2 ~ L/~ sup [f '(y)[ f 1 0 ( x ) -  PO(x)[ dx 
~c y~Q ~Q 

2 <~ ~ x ~  Ll~ sup [f '(y)[ (Vol Q)1/2 
y~Q 

x {}~ fQ [O(x)--PO(x)]2 dx} 1/2 

<~ 2 x ~  L3/2(fllc)'/'~ sup [l~/2f'(y)[ 
y~Q 

x exp l~ 
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It is immediately evident that 

[I3(~b)l ~< L3/2(flIJ/m sup If(y)/l~/2] 
y ~ Q  

xexp [O(x)-PO(x)12dx (5.5) 

Now let W x be the operator 

4 
Wx = PZxP + ~c (I-  P) Zx(I- P) (5.6) 

From (3.8), Lemma2.1, and (5.3)-(5.5) it follows now that there is a 
constant C such that 

IK2(Q, Q')] ~< CL3(~lc) I/s exp[ -d(Q, Q')/2Ic] 

xf] dsEe~,Iexp( ~ (0, W x 0 ) ) ]  (5.7) 

where X = Q w Q'. 
We estimate the expectation in (5.7) by using the technique of ref. 2. 

Thus, we write 

where d#(f) is a Gaussian probability distribution. Then we have 

E~Ds [exp(�89 (0,  Wx~))] 

dl~(f) Ee~s[exp(- <f, ~ ) ) ]  

d~(f) exp (~ < f  CD,,f)) 

d,u(f)exp (f, CD, lf))] 

(5.9) 
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by Holder's inequality. Now we reverse the process and write 

d#( f )  exp (~  (f, CD.lf~)=E~z,[exp(~ (~, Wx~))] (5.10) 

dp(f)exp(~ ( f  CD, of))=EeDIexp( ~ (if, Work)) 1 

We have already shown how to estimate the quantities on the right in 
(5.10) and (5.11). They are bounded by a constant. The result now 
follows. | 

L e m m a  B.2. Let Y be a connected set with [ Y[ ~> 2, and Q denote 
a lattice cube, Q ~ Y. Then there exist constants Cl, c2, 6 > 0 such that if 
/~lc < 6, then 

[K2(Y, Q)] <~ elL 3 exp[--d(Y, Q)/2lc]([31c) -~/2 
x expl- - - C  2 [Y[ (fllc) -3/1~ (5.12) 

Proof. We use the formula (3.10) for K2(Y, Q). Letting X =  Yw Q, 
then 

where 

1 

Kz(Y, Q ) =  ~ exp[- - F ( h r ) ]  fo dsFI(s, hy) + J(s, hy)] (5.13) 
hy 

I(s'h)=E~D~ {fr fQ CD(X' Y) 

x 6~(x-----) 6qJ(y--~) dx dy exp[Gx(~ + gs)] (5.14) 

J(s,h)=E~o~{fQg(h)(x)fi-~(x)dxexp[Gx(t~+gs)] } 

From Lemma 5.1 it is easy to see that 

[I(s, h)[ ~< CL3(fllc) 1/5 [Y[ e x p [ - d ( Y ,  Q)/2lc] 
x E~os{exp[-�89 (~ + gs - h, Wx(~ + g~ - h))] } (5.15) 
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where C is the same constant as in (5.7). Using the Gaussian representation 
(5.8) from Lemma 5.1, we have the inequality 

E~Ds{exp[�89 (0  + gs -- h, Wx(0 + gs - h) ) ] } 

~< E~{exP[�89 ( 0 + g-h ,  Wx( O + g - h ) ) ] } "  
1( x ( E , ~ { e x p [ ~  ~, + g -  h, Wy(r + g - h ) ) ]  } 

x E~[exp(�89 (0,  W e 0 ) ) ] )  1 -s (5.16) 

Arguing as in Lemmas 4.2 and 4.5, we conclude from (5.16) that 

exp[ -F(h ) ]  Eeo {exP[�89 0 + g, -h,  Wx(qs + gs - h ) ) ] }  

~< cl exp[c2 IX[ - c3([~lc) -3/10 ( ~ ( / ~ l / 2 h ) ]  (5.7) 

We bound J(s, h) in a similar way using Lemma 5.1 to obtain the 
inequality 

IJ(s, h )l <~ CL 3( fllo)- l/21YI exp[--d( Y, Q )/21o] 

• 6(fll/2h) 1/2 EeD {exP[�89 ( ~ + g, -h ,  Wx(~9 + g, - h ) ) ]  } 

(5.18) 
To see this, we take f ( x ) =  g(h)(x) in (5.2). Thus, we need to establish the 
estimate 

sup [tg(h)(x)/l~/21 + ]l)/2 Vg(h)(x)] ] 
x e Q  

<~ CL3/R(~lc)-~/2]YI exp[-d(Y,  Q)/2lc] 6(~1/2h) v2 (5.19) 

By Lemma 2.1 we have for xeQ, 

g(h)(x) A ( - l x - y t )  
I T 2 - -  ~<I-~ fy exp 21c Ih(y)[ dy 
I " c  I lc 

A I x -  ~< t_7)5 [ fv exp ( 6 5/6 

~< $75-I yIAL3Ir exp \(-d(Y'~ Q)) [  ~ h611/6 (5.20, 

Now we use the discrete Sobolev inequality, 
[-11/6 

h6~] <<.K6(h) ~/2 (5.21) 

for some universal constant K, which, together with (5.20), yields the 
inequality (5.19) for the first term on the left in (5.19). The inequality for 
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the second term follows in a similar fashion using Lemma 2.1 again. The 
result follows easily now from (5.15)-(5.19). | 

I_emma 5.3. Let Y and Z be disjoint connected sets with I YI > 2, 
rZI ~> 2. Then there exist constants Cl, c2, 6 > 0 such that if file < 6, then 

IK2(Y, Z)l ~< cl L 3 exp[ -d (Y ,  Z)/221c]( fllc) -1 

x e x p [ - c 2  t Yw Zl (fllc) -3/1~ (5.22) 

Proof. We use the formula (3.13) for K2(Y, Z). Thus we write 

1 

K2(Y,Z)= ~ exp( -Fs )  ~ ds[I(s, hy, hz) 
hy, hz ol3 

+ J(s, hy, hz)+ M(s, hy, hz) ] (5.23) 
where 

I(s, hr.,hz)= Eeo s {fr  fz CD(X, y) 

} x 6O(x~) 30(Y) dx dy exp[Gx(O + gx)] 

+ [Jz g(h 

M(s, by, hz)= - 2F(hy, hz) E~s{exp[Gx(O + g,)]} 

Here X is the set X =  Yw Z and gs interpolates h = h r + hz. We can bound 
I and J in a similar way to Lemma 5.2. In fact, we can easily see that 

II(s, hy, hz)l ~< CLg( fllc) 1/5 [YI  I l l  exp [ -d (Y ,  Z)/2lc] 

xEeos{exP[�89 W x ( ~ + g s - h ) ) ] }  (5.25) 

where C is the same constant as in (5.7), and J satisfies the inequality 

IJ(s, hr, hz)l 4 C L  3 I Yt. I l l  (fllc) -1/2 

x exp [ - d( Y, Z)/21o ] 6 ( fil/2h)1/2 

xEe, , , {exp[ �89 W x ( ~ , + g , - h ) > ] }  (5.26) 

To bound M, we need to estimate Hhy, hz), which is defined in 
(2.13). Concentrating on the first term in (2.13) and using Lemma 2.1, we 
have the inequality 
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~ C 1  

_<Cl 
"~ 7 lc 

x[frfzeXp(-3]y--zl~421e / dy dzl 2/3 

I(g(hy), (--AD + 1) 2 g(hz) )l 

= I((--AD + 1) g(hz), (--AD + 1) g(hz))[ 

A 2 ( ly-xl lx-zl) 
<-76 fr  fA fz Ihr(y)l exp 'hz(z)l dy dx dz l ~ 2l~ 2I~ 

fr  fz {hy(y)[ exp ( ly_-z[~221c ] Ihz(z)l dy dz 

[[[hr[16 3 3 3 3 ( t  I c [Zl)l/6J[l[hzl[6 (L l~ [ y[)l/6] 

(5.27) 

by the H61der inequality. If we now apply the discrete Sobolev inequality, 
we have then 

1(g(hy), ( - A ~  + 1) 2 g(hz))l  

~< c2 I Y[. IZl L6(fllc) 1 6(flU2hy)U2 

• 6(fl~/2hz)l/2 expl- - d (  Y, Z)/221c] (5.28) 

In a similar way we have 
1 

7~ [ (g(hr) ,  hz)]  <~ C 3 IYI-IZl Z6(fllc)-1 6(fll/2hy)1/2 
l,. 

X 6(fll/2hz) 1/2 exp[ -d (Y ,  Z)/21c] (5.29) 

The inequalities (5.28) and (5.29) will yield a bound on F(hr, hz) and 
hence we conclude that 

IM(s, hr, hz)[ ~< CL 3 I Yt. IZl (file) -1 e x p [ - d ( Y ,  Z)/2)tlc] 6(f11/2h) 
xEeDs{exP[�89 W x ( ~ + g s - h ) ) ]  } (5.30) 

We estimate Ee.os as in (5.16) to obtain the inequality 

e x p ( - F s )  E a ~ { e x p [ � 8 9  gs - h, Wx(• + g, - h ) ) ] } 

~< ( e x p [ - F ( h ) ]  

x Ee~{exp[�89 ( 0 + g(h ) -  h, Wx(~P + g(h) - h ) ) ]  })" 

x (exp [ - F(h r) ] 

x E~{exP[ �89  0 + g ( h r ) - h r ,  Wr(tp + g ( h r ) - h r ) ) ] } ) '  s 

• ( e x p [ - F ( h z ) ]  

• Ee~{exP[�89 ( ~  + g(hz) - hz, Wz(~ + g(hz) - hz))]  })~-~ 
(5.31) 
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The three terms in large parentheses on the right in (5.31) may be 
estimated from Lemma 4.5 and hence we conclude that (5.31) is bounded 
above by 

Cl exp[c2 IXl - c3(fll~) 3/10 6](fll/2h) ] (5.32) 

The inequality (5.22) easily follows now by summing with respect to hy  
and hz  using the estimates (5.25), (5.26), (5.30), and (5.32). | 

L e m m a  5.4. Let N be an integer, N~> 3. Then there exist constants 
C > 0 and 6 > 0 such that if/~l~ < 6, then 

IK2(X)J < C 1(Bl~)1/5 (5.33) 
Q z x  

IXr =2 

IK2(X)I <~exp[-CN(fllc) 3/1o] (5.34) 
Q e X  

IXI=N 

Proof. The inequality (5.33) follows from (5.1) on summing with 
respect to Q'. The inequality (5.34) follows from (5.12) and (5.22). We need 
to show that 

IK2(Y, Q')I <~ exp[-CN(fllc) 3/10] 
QE Y~JQ' 
IYI=N--1 

(5.35) 

To see this, we first consider 

y, 
IYI=N--1 

tK2(Y, Q)I ~Cl L3 ~ ~ e x p [ - d ( Q ' ,  Q)/21c] 
Y Q ' ~ y  

x (fllc) -1/2 exp[- - c  2 I YJ. (///c)-3/1o] 

=Cl L3 Z ~ expl- -d(Q' ,  Q)/2lc] 
Q' Q ' ~ y  

x (file) 1 /2exp[-c2 ]Y[ (/~/c)-3/10] 

~< cl exp[--c3N(fllc)-3/10] 

• ~ L 3 exp[ - d ( Q ' ,  Q)/2lc] 
Q, 

C 4 exp[ - e 3 N(fllc) -3/lo] (5.36) 
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Next we need to consider 

K2( Y, Q') 
Q~Y,]YI=N 1,Q' 

~ c I L 3  2 2 exp[--d(Q", Q')/21~] 
Q e Y  Q"eY, Q' 

x (fll~) 1/2 e x p [ - c 2  I YI (fllc) -3/10] 

~<c3 S IYI (fllc)-l/2exp[--c2 iYI (/~lc)-'/1~ 
Q e Y  

<~ c4 e x p [ - c s N ( f i l c )  3/10] (5.37) 

The inequalities (5.36) and (5.37) prove (5.35). In a similar way we can 
deal with the case of Kz(Y, Z )  using (5.22). | 

6. PROOF OF T H E O R E M  1.2 

In this section we shall prove Theorem 1.2 by showing that the cluster 
expansion defined in Section 3 is convergent and is term-by-term differen- 
tiable in fl, z. Our first lemma bounds the n-particle activities defined by 
(3.19). The proof is similar to the proofs in Section 5 bounding the two- 
particle activities. We shall merely state the result. 

kemma 6.1. Let Kn, A(X1,  X 2 .... , X,,) be defined by (3.19) and put 
X =  UT= 1 Xi. Let D r denote differentiation of order r in the variables fl, z. 
Then there exist universal constants c2, m, e > 0  and a constant Cl(fl, z, r) 
depending on fl, z, r such that 

IDrVo, A(Xl, X2 ..... X.)t 

<. Cl(fl, z, r) L 3~" l)(fllc)"/l~ exp[ --c2(IXI - n)(f l lc)  - 3/10] 

x ~ 1~ [nr(i)!] m ~, e x p [ - d ( X ,  Xy221c] (6.1) 
T ic T (i,j)~ T 

Here T is a tree graph on 1, 2, .,, n and nr(i)  is the number of bounds 
which intersect the vertex i, 1 ~< i ~  n. 

Also in (6.1) the differentiation is taken under the assumption that L is 
fixed. 

Our second lemma concerns the existence of the thermodynamic limit. 
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L e m m a  6.2.  With Kn, A a s  in Lemma 6.1, the limit 

lira Kn,~(X1, X2 ..... Xn) = K~(XI ..... Xn) (6.2) 
A ~ o : )  

exists and is t ranslat ion invariant. Further,  for any D r, 

lim DrKn, A(X1, X2, ..., X , ) =  DrKn(XI ..... Xn) (6.3) 
A ~ o o  

Proof.  This can be accomplished as in ref. 2 by introducing a 
covar iance  in the definition of Kn, A which interpolates !~ D and the free 
opera tor  s corresponding to A = R 3. The interpolated covariance is 

s  = ts  + (1 - t ) s  (6.4) 

and with corresponding K,  denoted K,,t. Thus, 

gn, 1 = Kn, A, gn, o = K ,  (6.5) 

N o w  the difference K . , 1 - K , , o  can be computed  using the fundamental  
theorem of calculus and it is a s tandard procedure to estimate it. 

P r o o f  o f  Theorem 1.2. This follows in a s tandard fashion on expanding 
out (3.21) as in ref. 1 and using Lemmas  6.1 and 6.2. 
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